A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure
نویسنده
چکیده
In this paper we formulate and test numerically a fully-coupled discontinuous Galerkin (DG) method for incompressible two-phase flow with discontinuous capillary pressure. The spatial discretization uses the symmetric interior penalty DG formulation with weighted averages and is based on a wetting-phase potential / capillary potential formulation of the twophase flow system. After discretizing in time with diagonally implicit Runge-Kutta schemes the resulting systems of nonlinear algebraic equations are solved with Newton’s method and the arising systems of linear equations are solved efficiently and in parallel with an algebraic multigrid method. The new scheme is investigated for various test problems from the literature and is also compared to a cell-centered finite volume scheme in terms of accuracy and time to solution. We find that the method is accurate, robust and efficient. In particular no post-processing of the DG velocity field is necessary in contrast to results reported by several authors for decoupled schemes. Moreover, the solver scales well in parallel and threedimensional problems with up to nearly 100 million degrees of freedom per time step have been computed on 1000 processors.
منابع مشابه
A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملA hybridizable discontinuous Galerkin method for two-phase flow in heterogeneous porous media
We present a new method for simulating incompressible immiscible two-phase flow in porous media. The semi-implicit method decouples the wetting phase pressure and saturation equations. The equations are discretized using a hybridizable discontinuous Galerkin (HDG) method. The proposed method is of high order, conserves global/local mass balance, and the number of globally coupled degrees of fre...
متن کاملNumerical simulation of two-phase immiscible incompressible flows in heterogeneous porous media with capillary barriers
We present a new version of the sequential discontinuous Galerkin method introduced in [25] for two-phase immiscible incompressible flows in heterogeneous porous media with a discontinuous capillary field. Here, a new implementation of the extended interface condition, that does not use the threshold saturation value at the interface and permits treatment of different residual saturations in di...
متن کاملDiscontinous Galerkin and Mixed-Hybrid Finite Element Approach to Two-Phase Flow in Heterogeneous Porous Media with Different Capillary Pressures
A modern numerical scheme for simulation of flow of two immiscible and incompressible phases in inhomogeneous porous media is proposed. The method is based on a combination of the mixed-hybrid finite element (MHFE) and discontinuous Galerkin (DG) methods. The combined approach allows for accurate approximation of the flux at the boundary between neighboring finite elements, especially in hetero...
متن کاملA discontinuous Galerkin method for two-phase flow in a porous medium enforcing H(div) velocity and continuous capillary pressure
We consider the slightly compressible, two-phase flow problem in a porous medium with capillary pressure. The problem is solved using the implicit pressure, explicit saturation method (IMPES), and the convergence is accelerated with iterative coupling of the equations. We use discontinuous Galerkin to discretize both the pressure and saturation equations. We apply two improvements, which are pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1309.7555 شماره
صفحات -
تاریخ انتشار 2013